facebookresearch/faiss 源码下载与部署教程

项目概述

A library for efficient similarity search and clustering of dense vectors.

项目地址

https://github.com/facebookresearch/faiss

项目页面预览

facebookresearch/faiss preview

关键指标

  • Stars:38740
  • 主要语言:C++
  • License:MIT License
  • 最近更新:2026-01-14T02:05:43Z
  • 默认分支:main

本站高速下载(国内可用)

安装部署要点(README 精选)

Installing

Faiss comes with precompiled libraries for Anaconda in Python, see faiss-cpu, faiss-gpu and faiss-gpu-cuvs. The library is mostly implemented in C++, the only dependency is a BLAS implementation. Optional GPU support is provided via CUDA or AMD ROCm, and the Python interface is also optional. The backend GPU implementations of NVIDIA cuVS can also be enabled optionally. It compiles with cmake. See INSTALL.md for details.

常用命令(从 README 提取)

@article{douze2024faiss,
      title={The Faiss library},
      author={Matthijs Douze and Alexandr Guzhva and Chengqi Deng and Jeff Johnson and Gergely Szilvasy and Pierre-Emmanuel Mazaré and Maria Lomeli and Lucas Hosseini and Hervé Jégou},
      year={2024},
      eprint={2401.08281},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

@article{johnson2019billion,
  title={Billion-scale similarity search with {GPUs}},
  author={Johnson, Jeff and Douze, Matthijs and J{\'e}gou, Herv{\'e}},
  journal={IEEE Transactions on Big Data},
  volume={7},
  number={3},
  pages={535--547},
  year={2019},
  publisher={IEEE}
}

通用部署说明(适用于大多数项目)

  1. 下载源码并阅读 README
  2. 安装依赖(pip/npm/yarn 等)
  3. 配置环境变量(API Key、模型路径、数据库等)
  4. 启动服务并测试访问
  5. 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)

免责声明与版权说明

本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。

© 版权声明
THE END
喜欢就支持一下吧
点赞13 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容