infiniflow/ragflow 源码下载与部署教程

项目概述

RAGFlow is a leading open-source Retrieval-Augmented Generation (RAG) engine that fuses cutting-edge RAG with Agent capabilities to create a superior context layer for LLMs

项目地址

https://github.com/infiniflow/ragflow

项目页面预览

infiniflow/ragflow preview

关键指标

  • Stars:71496
  • 主要语言:Python
  • License:Apache License 2.0
  • 最近更新:2026-01-15T11:30:33Z
  • 默认分支:main

本站高速下载(国内可用)

点击下载(本站镜像)
– SHA256:0b03046403769ef0cc7229b7a72e2388742a3d0c2581bcdf0cfab203eb65f469

安装部署要点(README 精选)

🔧 Configurations

When it comes to system configurations, you will need to manage the following files:

  • .env: Keeps the fundamental setups for the system, such as SVR_HTTP_PORT, MYSQL_PASSWORD, and
    MINIO_PASSWORD.
  • service_conf.yaml.template: Configures the back-end services. The environment variables in this file will be automatically populated when the Docker container starts. Any environment variables set within the Docker container will be available for use, allowing you to customize service behavior based on the deployment environment.
  • docker-compose.yml: The system relies on docker-compose.yml to start up.

The ./docker/README file provides a detailed description of the environment settings and service
configurations which can be used as ${ENV_VARS} in the service_conf.yaml.template file.

To update the default HTTP serving port (80), go to docker-compose.yml and change 80:80
to <YOUR_SERVING_PORT>:80.

Updates to the above configurations require a reboot of all containers to take effect:

bash
$ docker compose -f docker-compose.yml up -d

🔧 Build a Docker image

This image is approximately 2 GB in size and relies on external LLM and embedding services.

git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .

Or if you are behind a proxy, you can pass proxy arguments:

docker build --platform linux/amd64 \
  --build-arg http_proxy=http://YOUR_PROXY:PORT \
  --build-arg https_proxy=http://YOUR_PROXY:PORT \
  -f Dockerfile -t infiniflow/ragflow:nightly .

常用命令(从 README 提取)

$ git clone https://github.com/infiniflow/ragflow.git

$ cd ragflow/docker

   # git checkout v0.23.1
   # Optional: use a stable tag (see releases: https://github.com/infiniflow/ragflow/releases)
   # This step ensures the **entrypoint.sh** file in the code matches the Docker image version.

   # Use CPU for DeepDoc tasks:
   $ docker compose -f docker-compose.yml up -d

   # To use GPU to accelerate DeepDoc tasks:
   # sed -i '1i DEVICE=gpu' .env
   # docker compose -f docker-compose.yml up -d

$ docker logs -f docker-ragflow-cpu-1

通用部署说明

  1. 下载源码并阅读 README
  2. 安装依赖(pip/npm/yarn 等)
  3. 配置环境变量(API Key、模型路径、数据库等)
  4. 启动服务并测试访问
  5. 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)

免责声明与版权说明

本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容