feature-engine/feature_engine 源码下载与部署教程

项目概述

Feature engineering and selection open-source Python library compatible with sklearn.

项目地址

https://github.com/feature-engine/feature_engine

项目页面预览

feature-engine/feature_engine preview

关键指标

  • Stars:2177
  • 主要语言:Python
  • License:BSD 3-Clause “New” or “Revised” License
  • 最近更新:2026-01-11T14:12:57Z
  • 默认分支:main

本站高速下载(国内可用)

点击下载(本站镜像)
– SHA256:e436569ed90ba22cbab8a525f97fff0dbd869a45533bfd46ab1414fe81cbcdeb

安装部署要点(README 精选)

Installation

From PyPI using pip:

pip install feature_engine

From Anaconda:

conda install -c conda-forge feature_engine

Or simply clone it:

git clone https://github.com/feature-engine/feature_engine.git

Example Usage

>>> import pandas as pd
>>> from feature_engine.encoding import RareLabelEncoder

>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A    10
B    10
C     2
D     1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A       10
B       10
Rare     3
Name: var_A, dtype: int64

Find more examples in our Jupyter Notebook Gallery
or in the documentation.

常用命令(从 README 提取)

pip install feature_engine

conda install -c conda-forge feature_engine

git clone https://github.com/feature-engine/feature_engine.git

通用部署说明

  1. 下载源码并阅读 README
  2. 安装依赖(pip/npm/yarn 等)
  3. 配置环境变量(API Key、模型路径、数据库等)
  4. 启动服务并测试访问
  5. 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)

免责声明与版权说明

本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。

© 版权声明
THE END
喜欢就支持一下吧
点赞6 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容