项目概述
Feature engineering and selection open-source Python library compatible with sklearn.
项目地址
https://github.com/feature-engine/feature_engine
项目页面预览
关键指标
- Stars:2177
- 主要语言:Python
- License:BSD 3-Clause “New” or “Revised” License
- 最近更新:2026-01-11T14:12:57Z
- 默认分支:main
本站高速下载(国内可用)
点击下载(本站镜像)
– SHA256:e436569ed90ba22cbab8a525f97fff0dbd869a45533bfd46ab1414fe81cbcdeb
安装部署要点(README 精选)
Installation
From PyPI using pip:
pip install feature_engine
From Anaconda:
conda install -c conda-forge feature_engine
Or simply clone it:
git clone https://github.com/feature-engine/feature_engine.git
Example Usage
>>> import pandas as pd
>>> from feature_engine.encoding import RareLabelEncoder
>>> data = {'var_A': ['A'] * 10 + ['B'] * 10 + ['C'] * 2 + ['D'] * 1}
>>> data = pd.DataFrame(data)
>>> data['var_A'].value_counts()
Out[1]:
A 10
B 10
C 2
D 1
Name: var_A, dtype: int64
>>> rare_encoder = RareLabelEncoder(tol=0.10, n_categories=3)
>>> data_encoded = rare_encoder.fit_transform(data)
>>> data_encoded['var_A'].value_counts()
Out[2]:
A 10
B 10
Rare 3
Name: var_A, dtype: int64
Find more examples in our Jupyter Notebook Gallery
or in the documentation.
常用命令(从 README 提取)
pip install feature_engine
conda install -c conda-forge feature_engine
git clone https://github.com/feature-engine/feature_engine.git
通用部署说明
- 下载源码并阅读 README
- 安装依赖(pip/npm/yarn 等)
- 配置环境变量(API Key、模型路径、数据库等)
- 启动服务并测试访问
- 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)
免责声明与版权说明
本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END








暂无评论内容