shobrook/saplings 源码下载与部署教程

项目概述

Plug-and-play tree search for agents

项目地址

https://github.com/shobrook/saplings

项目页面预览

shobrook/saplings preview

关键指标

  • Stars:271
  • 主要语言:Python
  • License:Apache License 2.0
  • 最近更新:2025-07-27T09:29:45Z
  • 默认分支:master

本站高速下载(国内可用)

安装部署要点(README 精选)

Installation

$ pip install saplings

Quickstart

<!–Let’s build an agent that uses a web search tool to complete tasks. Our agent will be equipped with Monte Carlo Tree Search (MCTS) as a reasoning algorithm.

from saplings.examples import WebSearchTool
from saplings import MonteCarloAgent, Evaluator, OpenAI

model = OpenAI(model="gpt-4o")
evaluator = Evaluator(model)
tools = [WebSearchTool()]

agent = MonteCarloAgent(tools, model, evaluator)
messages, _, _ = agent.run("Create a table comparing ancient astronomical tools with their origin, accuracy, and modern equivalents.")
```-->

Below is a simple agent implementing Monte Carlo tree search (MCTS). It's equipped with a multiplication tool to solve tricky arithmetic problems.

```python
from saplings.examples import MultiplicationTool
from saplings import MonteCarloAgent, Evaluator, Model

model = Model(model="openai/gpt-4o") # Wraps LiteLLM
evaluator = Evaluator(model)
tools = [MultiplicationTool()]

agent = MonteCarloAgent(tools, model, evaluator)
messages, _, _ = agent.run("Let x = 9418.343 * 8.11 and y = 2x. Calculate (xy)(x^2).")

This is the “bare minimum” for setting up a search agent with saplings –– just a few lines of code. There are a lot more parameters you can control, all covered in the docs. But let’s first walk through the basics of creating your own tools and configuring an agent.

常用命令(从 README 提取)

$ pip install saplings

通用部署说明(适用于大多数项目)

  1. 下载源码并阅读 README
  2. 安装依赖(pip/npm/yarn 等)
  3. 配置环境变量(API Key、模型路径、数据库等)
  4. 启动服务并测试访问
  5. 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)

免责声明与版权说明

本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。

© 版权声明
THE END
喜欢就支持一下吧
点赞7 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容