项目概述
A Python implementation of LightFM, a hybrid recommendation algorithm.
项目地址
https://github.com/lyst/lightfm
项目页面预览

关键指标
- Stars:5058
- 主要语言:Python
- License:Apache License 2.0
- 最近更新:2024-07-24T18:48:54Z
- 默认分支:master
本站高速下载(国内可用)
点击下载(本站镜像)
– SHA256:a7875f6b9982c1356d45708b159b2139b5943ad54bccc12bb4a118baaa8443b7
安装部署要点(README 精选)
Installation
Install from pip:
pip install lightfm
or Conda:
conda install -c conda-forge lightfm
Quickstart
Fitting an implicit feedback model on the MovieLens 100k dataset is very easy:
from lightfm import LightFM
from lightfm.datasets import fetch_movielens
from lightfm.evaluation import precision_at_k
# Load the MovieLens 100k dataset. Only five
# star ratings are treated as positive.
data = fetch_movielens(min_rating=5.0)
# Instantiate and train the model
model = LightFM(loss='warp')
model.fit(data['train'], epochs=30, num_threads=2)
# Evaluate the trained model
test_precision = precision_at_k(model, data['test'], k=5).mean()
常用命令(从 README 提取)
pip install lightfm
conda install -c conda-forge lightfm
@inproceedings{DBLP:conf/recsys/Kula15,
author = {Maciej Kula},
editor = {Toine Bogers and
Marijn Koolen},
title = {Metadata Embeddings for User and Item Cold-start Recommendations},
booktitle = {Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender
Systems co-located with 9th {ACM} Conference on Recommender Systems
(RecSys 2015), Vienna, Austria, September 16-20, 2015.},
series = {{CEUR} Workshop Proceedings},
volume = {1448},
pages = {14--21},
publisher = {CEUR-WS.org},
year = {2015},
url = {http://ceur-ws.org/Vol-1448/paper4.pdf},
}
通用部署说明
- 下载源码并阅读 README
- 安装依赖(pip/npm/yarn 等)
- 配置环境变量(API Key、模型路径、数据库等)
- 启动服务并测试访问
- 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)
免责声明与版权说明
本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。
© 版权声明
文章版权归作者所有,未经允许请勿转载。
THE END








暂无评论内容