项目概述
AgentFlow: In-the-Flow Agentic System Optimization
项目地址
https://github.com/lupantech/AgentFlow
项目页面预览

关键指标
- Stars:1489
- 主要语言:Python
- License:MIT License
- 最近更新:2025-12-17T08:08:03Z
- 默认分支:main
本站高速下载(国内可用)
- 源码压缩包下载:点击下载(本站镜像)
- SHA256:f5618fa9318381169464329957d23f4971a6da9a7e6d445e003baa65e77dccf6
安装部署要点(README 精选)
⚙️ Setup
Installation
bash setup.sh
source .venv/bin/activate
# (Optional) Install `parallel` for running benchmark experiments in parallel:
sudo apt-get update
sudo apt-get install parallel
Setup Environment Variables
Copy the .env.template file from agentflow/.env.template and rename it to .env, then place it in the agentflow/ folder. Update the following variables with your own API keys:
– OPENAI_API_KEY (for judging reasponse)
– GOOGLE_API_KEY (for Google Search tool)
– DASHSCOPE_API_KEY (for calling Qwen-2.5-7B-Instruct as engine for agents and tools)
– TOGETHER_API_KEY (alternative for calling Qwen-2.5-7B-Instruct as engine for agents and tools – recommended for international users)
– More ways: serve Qwen2.5-7B-instruct model with vLLM (details refer to serve_vllm_local.md).
Please check API Key Setup Guide for detailed instructions on how to obtain these keys.
cp agentflow/.env.template agentflow/.env
# Then edit agentflow/.env with your API keys
常用命令(从 README 提取)
bash setup.sh
source .venv/bin/activate
# (Optional) Install `parallel` for running benchmark experiments in parallel:
sudo apt-get update
sudo apt-get install parallel
cp agentflow/.env.template agentflow/.env
# Then edit agentflow/.env with your API keys
# train data
python data/get_train_data.py
# validation data
python data/aime24_data.py
通用部署说明(适用于大多数项目)
- 下载源码并阅读 README
- 安装依赖(pip/npm/yarn 等)
- 配置环境变量(API Key、模型路径、数据库等)
- 启动服务并测试访问
- 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)
免责声明与版权说明
本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。








暂无评论内容