lupantech/AgentFlow 源码下载与部署教程

项目概述

AgentFlow: In-the-Flow Agentic System Optimization

项目地址

https://github.com/lupantech/AgentFlow

项目页面预览

lupantech/AgentFlow preview

关键指标

  • Stars:1489
  • 主要语言:Python
  • License:MIT License
  • 最近更新:2025-12-17T08:08:03Z
  • 默认分支:main

本站高速下载(国内可用)

安装部署要点(README 精选)

⚙️ Setup

Installation

bash setup.sh
source .venv/bin/activate
# (Optional) Install `parallel` for running benchmark experiments in parallel:
sudo apt-get update
sudo apt-get install parallel

Setup Environment Variables

Copy the .env.template file from agentflow/.env.template and rename it to .env, then place it in the agentflow/ folder. Update the following variables with your own API keys:
OPENAI_API_KEY (for judging reasponse)
GOOGLE_API_KEY (for Google Search tool)
DASHSCOPE_API_KEY (for calling Qwen-2.5-7B-Instruct as engine for agents and tools)
TOGETHER_API_KEY (alternative for calling Qwen-2.5-7B-Instruct as engine for agents and tools – recommended for international users)
– More ways: serve Qwen2.5-7B-instruct model with vLLM (details refer to serve_vllm_local.md).

Please check API Key Setup Guide for detailed instructions on how to obtain these keys.

cp agentflow/.env.template agentflow/.env
# Then edit agentflow/.env with your API keys

常用命令(从 README 提取)

bash setup.sh
source .venv/bin/activate
# (Optional) Install `parallel` for running benchmark experiments in parallel:
sudo apt-get update
sudo apt-get install parallel

cp agentflow/.env.template agentflow/.env
# Then edit agentflow/.env with your API keys

# train data
python data/get_train_data.py
# validation data
python data/aime24_data.py

通用部署说明(适用于大多数项目)

  1. 下载源码并阅读 README
  2. 安装依赖(pip/npm/yarn 等)
  3. 配置环境变量(API Key、模型路径、数据库等)
  4. 启动服务并测试访问
  5. 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)

免责声明与版权说明

本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。

© 版权声明
THE END
喜欢就支持一下吧
点赞10 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容