项目概述
Weaviate is an open-source vector database that stores both objects and vectors, allowing for the combination of vector search with structured filtering with the fault tolerance and scalability of a cloud-native database.
项目地址
https://github.com/weaviate/weaviate
项目页面预览
关键指标
- Stars:15398
- 主要语言:Go
- License:BSD 3-Clause “New” or “Revised” License
- 最近更新:2026-01-14T16:09:39Z
- 默认分支:main
本站高速下载(国内可用)
- 源码压缩包下载:点击下载(本站镜像)
- SHA256:339c0081facca7100931e504bc8ce5a78128294897b6a9d22116025244771d53
安装部署要点(README 精选)
Installation
Weaviate offers multiple installation and deployment options:
See the installation docs for more deployment options, such as AWS and GCP.
Getting started
You can easily start Weaviate and a local vector embedding model with Docker.
Create a docker-compose.yml file:
services:
weaviate:
image: cr.weaviate.io/semitechnologies/weaviate:1.32.2
ports:
- "8080:8080"
- "50051:50051"
environment:
ENABLE_MODULES: text2vec-model2vec
MODEL2VEC_INFERENCE_API: http://text2vec-model2vec:8080
# A lightweight embedding model that will generate vectors from objects during import
text2vec-model2vec:
image: cr.weaviate.io/semitechnologies/model2vec-inference:minishlab-potion-base-32M
Start Weaviate and the embedding service with:
docker compose up -d
Install the Python client (or use another client library):
pip install -U weaviate-client
The following Python example shows how easy it is to populate a Weaviate database with data, create vector embeddings and perform semantic search:
import weaviate
from weaviate.classes.config import Configure, DataType, Property
# Connect to Weaviate
client = weaviate.connect_to_local()
# Create a collection
client.collections.create(
name="Article",
properties=[Property(name="content", data_type=DataType.TEXT)],
vector_config=Configure.Vectors.text2vec_model2vec(), # Use a vectorizer to generate embeddings during import
# vector_config=Configure.Vectors.self_provided() # If you want to import your own pre-generated embeddings
)
# Insert objects and generate embeddings
articles = client.collections.get("Article")
articles.data.insert_many(
[
{"content": "Vector databases enable semantic search"},
{"content": "Machine learning models generate embeddings"},
{"content": "Weaviate supports hybrid search capabilities"},
]
)
# Perform semantic search
results = articles.query.near_text(query="Search objects by meaning", limit=1)
print(results.objects[0])
client.close()
This example uses the Model2Vec vectorizer, but you can choose any other embedding model provider or bring your own pre-generated vectors.
常用命令(从 README 提取)
docker compose up -d
pip install -U weaviate-client
通用部署说明(适用于大多数项目)
- 下载源码并阅读 README
- 安装依赖(pip/npm/yarn 等)
- 配置环境变量(API Key、模型路径、数据库等)
- 启动服务并测试访问
- 上线建议:Nginx 反代 + HTTPS + 进程守护(systemd / pm2)
免责声明与版权说明
本文仅做开源项目整理与教程索引,源码版权归原作者所有,请遵循对应 License 合规使用。








暂无评论内容